If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18=11x
We move all terms to the left:
6x^2-18-(11x)=0
a = 6; b = -11; c = -18;
Δ = b2-4ac
Δ = -112-4·6·(-18)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{553}}{2*6}=\frac{11-\sqrt{553}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{553}}{2*6}=\frac{11+\sqrt{553}}{12} $
| 30p-60=20p | | 18x-15=180 | | b^2-112=6b | | 2x+10=35+x+25 | | 2x+10=35=+x+25 | | 16t^2+16t=-480 | | 16t^2-16t=480 | | 8/20=i/5 | | 3*4x=15 | | 12/2=48/e | | i/5=8/20 | | 3y=7+17.9y= | | 3a-5a+1a=11 | | (x/9)+7=3 | | 4(x-3)-3x=0 | | 8x+17=12x-39 | | 3(x-7+2=17 | | 442=−7(z−3) | | 5x-6+14x-4=180 | | 5(y-1)=50 | | 2x-1,4=2x+4 | | -6(5x-5)-6(8+3x)=30 | | 2(7x-13)=16x-38 | | 46=3(n+1)-2(7n-5) | | 5a(a=20) | | -22x=55 | | $15=-5x+10$ | | 5x+35=x+5 | | 3t2-3t+18=0 | | 10x-15=6x-43 | | -4x^-2=0 | | 14-2(3p+1=6(4+p1 |